Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure
نویسندگان
چکیده
BACKGROUND Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. RESULTS Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. CONCLUSIONS Spinal epigenetic changes involving Bdnf and Pdyn may contribute to the enhanced postoperative nociceptive sensitization and analgesic tolerance observed after continuous opioid exposure. Treatments blocking the epigenetically mediated up-regulation of these genes or administration of TrkB or κ-opioid receptor antagonists may improve the clinical utility of opioids, particularly after surgery.
منابع مشابه
Association of morphine-induced analgesic tolerance with changes in gene expression of GluN1 and MOR1 in rat spinal cord and midbrain
Objective(s): We aimed to examine association of gene expression of MOR1 and GluN1 at mRNA level in the lumbosacral cord and midbrain with morphine tolerance in male Wistar rats. Materials and Methods: Analgesic effects of morphine administrated intraperitoneally at doses of 0.1, 1, 5 and 10 mg/kg were examined using a hot plate test in rats with and without a history of 15 days morphine (10 mg...
متن کاملChanges in beta 1 and beta 2 integrin genes expression in rat lumbar spinal cord is supportive of the inhibitory effect of chronic pain on the development of tolerance to morphine analgesia
Introduction: In order to study the alterations of beta 1 and 2 integrins mRNA level in rat lumbar spinal cord following the induction of chronic pain and its effect on the development of tolerance to morphine analgesia, we examined the level of expression of these genes in the presence of chronic pain, which is an inhibitor of morphine tolerance. We used induction of chronic pain alone and ...
متن کاملChanges in gene expression levels of the enzymes involved in biosynthesis and degradation of catecholamines following chronic administration of morphine and pain in rats
Introduction: Stress inhibits the development of tolerance to morphine analgesia via activating Hypothalamic- Pituitary-Adrenal (HPA) axis. Modified catecholamine systems have been reported following morphine tolerance development. In the current study we tried to evaluate changes in the gene expression levels for MAO-A, MAO-B, COMT and thyrosine hydroxylase (TyH) enzymes following chronic p...
متن کاملEpigenetic regulation of spinal cord gene expression controls Opioid-Induced Hyperalgesia
BACKGROUND The long term use of opioids for the treatment of pain leads to a group of maladaptations which includes opioid-induced hyperalgesia (OIH). OIH typically resolves within few days after cessation of morphine treatment in mice but is prolonged for weeks if histone deacetylase (HDAC) activity is inhibited during opioid treatment. The present work seeks to identify gene targets supportin...
متن کاملPossible relevance of tolerance to analgesic effect of morphine due to chronic inflammatory pain and the role of lumbar spinal cord in this interaction
It has been reported that morphine tolerance does not develop in the presence of chronic pain. Therefore, this study was conducted to find out whether chronic inflammatory pain is able to eliminate or attenuate the developed tolerance to analgesic effect of morphine and also to investigate the role of lumbar spinal cord as a candidate site for this interaction. Tolerance was induced in adult ma...
متن کامل